THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 2

May 24, 2017

Name:

1. (40 points) Let $(c, 0)$ and $(-c, 0)$ be given and let H be the set of all points (x, y) whose difference in distances to $(c, 0)$ and $(-c, 0)$ is a constant $2 a$.
(a) Show that H is the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

(b) Show that it admits the parametric equations

$$
x= \pm a \cosh t, \quad y=b \sinh t, \quad t \in \mathbb{R}
$$

Solution. (a) From

$$
\sqrt{(x-c)^{2}+y^{2}}-\sqrt{(x+c)^{2}+y^{2}}= \pm 2 a
$$

we get $x^{2} / a^{2}-y^{2} / b^{2}=1$ as in the case of ellipse. (b) is a direct check.
2. (30 points) The folium of Descartes in parametric form is given by

$$
x=\frac{3 a t}{1+t^{3}}, \quad y=\frac{3 a t^{2}}{1+t^{3}}, \quad a>0
$$

(a) Show that it defines a regular curve on $(-\infty,-1)$ and $(-1, \infty)$.
(b) Verify that it is the solution set to

$$
x^{3}+y^{3}=3 a x y
$$

Solution.

(a) We differentiate x, y to get

$$
x^{\prime}(t)=\frac{3 a-6 a t^{3}}{\left(1+t^{3}\right)^{2}}, \quad y^{\prime}(t)=\frac{6 a t-3 a t^{3}}{\left(1+t^{3}\right)^{2}}
$$

One finds that $\left(x^{\prime}(t), y^{\prime}(t)\right) \neq(0,0)$ for all $t \neq 1$. It defines a regular curve.
(b) When $x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}$, we have

$$
\begin{aligned}
x^{3}+y^{3} & =\frac{27 a^{3} t^{3}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} \\
& =\frac{27 a^{3} t^{3}}{\left(1+t^{3}\right)^{2}} \\
& =3 a x y
\end{aligned}
$$

3. (30 points) Find the position $\mathbf{x}(t)$ of the motion in space when the acceleration and initial data are specified by:

$$
\mathbf{a}(t)=(\cos t, \sin t, 1) ; \quad \mathbf{x}(0)=(100,20,0), \quad \mathbf{v}(0)=(0,0,5)
$$

Solution.

$\mathbf{a}(t)=(\cos t, \sin t, 1)$. Integrating $\mathbf{a}(t)$ to get $\mathbf{v}(t)$:

$$
\begin{aligned}
\mathbf{v}(t) & =\int_{0}^{t} \mathbf{a}(\tau) d \tau+\mathbf{v}(0) \\
& =(\sin t,-\cos t+1, t-0)+(0,0,5) \\
& =(\sin t,-\cos t+1, t+5)
\end{aligned}
$$

Again, Integrating $\mathbf{v}(t)$ to get $\mathbf{x}(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\int_{0}^{t} \mathbf{v}(\tau) d \tau+\mathbf{x}(0) \\
& =\left(-\cos t+1,-\sin t+t, \frac{t^{2}}{2}+5 t-0\right)+(100,20,0) \\
& =\left(-\cos t+101,-\sin t+t+20, \frac{t^{2}}{2}+5 t\right)
\end{aligned}
$$

